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This post briefly introduces how to apply Alternating Direction Method of Mul-
tipliers (ADMM) to solve the distributed subgroup analysis, particularly the one
regularized by fused lasso.

1 Introduction

Given a communication network (a bidirected graph) 𝒢 = (𝒱, ℰ)1 with the number of nodes
|𝒱| = 𝐾, consider the following distributed optimization problem

min
x∶={𝑥𝑘∈ℝ𝑑}𝑘∈𝒱

∑
𝑘∈𝒱

𝑓𝑘(𝑥𝑘) + 𝜆 ∑
(𝑖,𝑗)∈ℰ

‖𝑥𝑖 − 𝑥𝑗‖1, (1)

where x ∈ ℝ𝑑𝐾 is the global target variables with 𝑥𝑘 being the local model parameter for node
𝑘 ∈ 𝒱; 𝑓𝑘 ∶ ℝ𝑑 → ℝ is the convex but not necessary smooth local loss function for node 𝑘 ∈ 𝒱;
‖ ⋅ ‖1 is the 1-norm. Examples of 𝑓𝑘 include least squares and hinge loss function (for training
support vector machine). In this post, we consider using Alternating Direction Method of
Multipliers (ADMM) to solve this problem in the distributed setting without any restriction
on communication.

In the distributed setting, a node 𝑘 ∈ 𝒱 can only access its local information (e.g., local loss
function 𝑓𝑘 and local variables 𝑥𝑘), and obtain limited information via communication with
its neighbors (e.g., 𝑥𝑗 for 𝑗 ∈ 𝒩𝑘 where 𝒩𝑘 is the set of nodes adjacent to node 𝑘).

We first deduce the dual problem of (1). Then the ADMM will be developed.

1Note that (𝑖, 𝑗) ∈ ℰ if and only if (𝑗, 𝑖) ∈ ℰ. By convention, we assume that (𝑖, 𝑖) ∉ ℰ for all 𝑖 ∈ 𝒱.
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2 Dual problem and ADMM

Proposition 2.1. The dual problem of (1) is

max
w∶={𝑤𝑖𝑗}(𝑖,𝑗)∈ℰ

− ∑
𝑘∈𝒱

𝑓∗
𝑘( ∑

𝑗∈𝒩𝑘

(𝑤𝑗𝑘 − 𝑤𝑘𝑗))

s.t. ‖𝑤𝑖𝑗‖∞ ≤ 𝜆 ∀(𝑖, 𝑗) ∈ ℰ,
(2)

where w ∶= {𝑤𝑖𝑗}(𝑖,𝑗)∈ℰ ∈ ℝ𝑑|ℰ| contains the dual variables; 𝑓∗
𝑘 is the convex conjugate of 𝑓𝑘;

𝒩𝑘 is the set of nodes adjacent to node 𝑘 ∈ 𝒱; ‖ ⋅ ‖∞ is the infinity norm.

Proof. We first rewrite (1) as the following equivalent constraint optimization problem

min
x,d

∑
𝑘∈𝒱

𝑓𝑘(𝑥𝑘) + 𝜆 ∑
(𝑖,𝑗)∈ℰ

‖𝑑𝑖𝑗‖1

s.t. 𝑑𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 ∀(𝑖, 𝑗) ∈ ℰ,
(3)

where d ∶= {𝑑𝑖𝑗}(𝑖,𝑗)∈ℰ ∈ ℝ𝑑|ℰ| is the dummy variable. The Lagrangian function of (3) is

ℒ(x, w) = ∑
𝑘∈𝒱

𝑓𝑘(𝑥𝑘) + 𝜆 ∑
(𝑖,𝑗)∈ℰ

‖𝑑𝑖𝑗‖1 + ∑
(𝑖,𝑗)∈ℰ

⟨𝑤𝑖𝑗, 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗⟩,

where w ∶= {𝑤𝑖𝑗}(𝑖,𝑗)∈ℰ ∈ ℝ𝑑|ℰ| is the dual variable.

Notice that we have

min
𝑥𝑘

𝑓𝑘(𝑥𝑘) − ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑗𝑘 − 𝑤𝑘𝑗)⟩ = −𝑓∗
𝑘( ∑

𝑗∈𝒩𝑘

(𝑤𝑗𝑘 − 𝑤𝑘𝑗));

min
𝑑𝑖𝑗

𝜆‖𝑑𝑖𝑗‖1 − ⟨𝑤𝑖𝑗, 𝑑𝑖𝑗⟩ = {0 if ‖𝑤𝑖𝑗‖∞ ≤ 𝜆,
−∞ otherwise.

Therefore, we have the dual problem as in (2).

Next we move on to the development of the corresponding ADMM.

Given the augmented parameter 𝛽 > 0, consider the augmented Lagrangian function with
respect to (3), defined as

ℒ𝛽(x, d, w) ∶= ∑
𝑘∈𝒱

𝑓𝑘(𝑥𝑘) + 𝜆 ∑
(𝑖,𝑗)∈ℰ

‖𝑑𝑖𝑗‖1 + ∑
(𝑖,𝑗)∈ℰ

⟨𝑤𝑖𝑗, 𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗⟩

+ 𝛽
2 ∑

(𝑖,𝑗)∈ℰ
‖𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗‖2.
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For simplicity, we make use of the incidence matrix 𝑀 ∈ ℝ|ℰ|×|ℰ| and the Laplacian matrix
𝐿 = 𝑀⊤𝑀 ∈ ℝ|ℰ|×|ℰ| of the communiaction graph 𝒢, which are defined by

𝑀𝑖𝑗 =
⎧{
⎨{⎩

1 if (𝑖, 𝑗) ∈ ℰ,
−1 if (𝑗, 𝑖) ∈ ℰ,
0 otherwise;

𝐿𝑖𝑗 =
⎧{
⎨{⎩

|𝒩𝑖| if 𝑖 = 𝑗,
−1 if (𝑖, 𝑗) ∈ ℰ,
0 otherwise.

Using 𝑀 , we can simplify the augmented Lagrangian function as

ℒ𝛽(x, d, w) = ∑
𝑘∈𝒱

(𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑘𝑗 − 𝑤𝑗𝑘)⟩)

+ ∑
(𝑖,𝑗)∈ℰ

(𝜆‖𝑑𝑖𝑗‖1 − ⟨𝑤𝑖𝑗, 𝑑𝑖𝑗⟩ + 𝛽
2 ‖𝑥𝑖 − 𝑥𝑗 − 𝑑𝑖𝑗‖2)

= ∑
𝑘∈𝒱

(𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑘𝑗 − 𝑤𝑗𝑘)⟩)

+ 𝜆‖d‖1 − ⟨w, d⟩ + 𝛽
2 ‖(𝑀 ⊗ 𝐼𝑑)x − d‖2

= ∑
𝑘∈𝒱

(𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑘𝑗 − 𝑤𝑗𝑘)⟩)

+ 𝜆‖d‖1 − ⟨w, d⟩ + 𝛽
2 ‖(𝑀 ⊗ 𝐼𝑑)x‖2 − 𝛽⟨(𝑀 ⊗ 𝐼𝑑)x, d⟩ + 𝛽

2 ‖d‖2,

where 𝐼𝑑 is the 𝑑 × 𝑑 identity matrix.

The classical ADMM applied to (3) consists of the update formulae

⎧{{
⎨{{⎩

x𝑡+1 = argmin
x

ℒ𝛽(x, d𝑡, w𝑡),

d𝑡+1 = argmin
d

ℒ𝛽(x𝑡+1, d, w𝑡),

w𝑡+1 = w𝑡 + 𝛽((𝑀 ⊗ 𝐼𝑑)x𝑡+1 − d𝑡+1).

One can readily see that the x-update admits the form

x𝑡+1 =argmin
x

∑
𝑘∈𝒱

(𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑡
𝑘𝑗 − 𝑤𝑡

𝑗𝑘)⟩) + 𝛽
2 ‖(𝑀 ⊗ 𝐼𝑑)x‖2 − 𝛽⟨(𝑀 ⊗ 𝐼𝑑)x, d𝑡⟩,

where (𝑀 ⊗ 𝐼𝑑)x involves the full knowledge of the graph 𝒢. However, the full information of
the graph 𝒢 is unrevealed to any of nodes in the distributed setting. It follows that in this case
the classical ADMM possesses more than three blocks, which does not converge in general. To
address this issue, we use the proximal ADMM by adding a proximal term in the x-update
subproblem to make the subproblem solvable in parallel (Fazel et al. 2013; Li and Pong 2015).
For this approach, we require a valid Bregman function, which we now define.
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Let
𝜙(x) = 𝛽‖(𝑁 ⊗ 𝐼𝑑)x‖2 − 𝛽

2 ‖(𝑀 ⊗ 𝐼𝑑)x‖2,

where 𝑁 ∈ ℝ𝐾×𝐾 is the diagonal matrix whose diagonal elements are 𝑁𝑖𝑖 = √|𝒩𝑖|. The
Hessian of 𝜙 is hence given by

∇2𝜙(x) = 2𝛽(𝑁⊤𝑁 ⊗ 𝐼𝑑) − 𝛽(𝑀⊤𝑀 ⊗ 𝐼𝑑) = (2𝛽𝑁⊤𝑁 − 𝛽𝑀⊤𝑀) ⊗ 𝐼𝑑 =∶ 𝑃 ⊗ 𝐼𝑑.

Recall that 𝑀⊤𝑀 = 𝐿 and notice that 2𝛽𝑁⊤𝑁 is again a diagonal matrix whose 𝑖-th diagonal
element is 2𝛽|𝒩𝑖|. We can then see that

𝑃𝑖𝑗 =
⎧{
⎨{⎩

𝛽|𝒩𝑖| if 𝑖 = 𝑗
𝛽 if (𝑖, 𝑗) ∈ ℰ
0 otherwise

.

Hence it holds that ∇2𝜙(x) ⪰ 0 thanks to the Gershgorin circle theorem. Thus, 𝜙 is a valid
kernel for defining the Bregman distance

𝐷𝜙(x1, x2) = 𝜙(x1) − 𝜙(x2) − ⟨∇𝜙(x2), x1 − x2⟩.

Now, the proximal ADMM applied to (3) is

⎧{{
⎨{{⎩

x𝑡+1 = argmin
x

ℒ𝛽(x, d𝑡, w𝑡) + 𝐷𝜙(x, x𝑡),

d𝑡+1 = argmin
d

ℒ𝛽(x𝑡+1, d, w𝑡),

w𝑡+1 = w𝑡 + 𝛽((𝑀 ⊗ 𝐼𝑑)x𝑡+1 − d𝑡+1).

For the x-update, we can see that the corresponding minimization problem now decouples
as

x𝑡+1 = argmin
x

ℒ𝛽(x, d𝑡, w𝑡) + 𝐷𝜙(x, x𝑡)

= argmin
x

∑
𝑘∈𝒱

{𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑡
𝑘𝑗 − 𝑤𝑡

𝑗𝑘)⟩} + 𝛽
2 ‖(𝑀 ⊗ 𝐼𝑑)x‖2 − 𝛽⟨(𝑀 ⊗ 𝐼𝑑)x, d𝑡⟩

+ 𝛽‖(𝑁 ⊗ 𝐼𝑑)x‖2 − 𝛽
2 ‖(𝑀 ⊗ 𝐼𝑑)x‖2 − ⟨(𝑃 ⊗ 𝐼𝑑)x𝑡, x⟩

= argmin
x

∑
𝑘∈𝒱

{𝑓𝑘(𝑥𝑘) + ⟨𝑥𝑘, ∑
𝑗∈𝒩𝑘

(𝑤𝑡
𝑘𝑗 − 𝑤𝑡

𝑗𝑘 − 𝛽𝑑𝑡
𝑘𝑗 + 𝛽𝑑𝑡

𝑗𝑘 − 𝛽𝑥𝑡
𝑗) − 𝛽|𝒩𝑘|𝑥𝑡

𝑘⟩ + 𝛽|𝒩𝑘|‖𝑥𝑘‖2}

= ( argmin
𝑥𝑘

{𝑓𝑘(𝑥𝑘) + 𝛽|𝒩𝑘| ⋅ ∥𝑥𝑘 −
𝛽|𝒩𝑘|𝑥𝑡

𝑘 − ∑𝑗∈𝒩𝑘
(𝑤𝑡

𝑘𝑗 − 𝑤𝑡
𝑗𝑘 − 𝛽𝑑𝑡

𝑘𝑗 + 𝛽𝑑𝑡
𝑗𝑘 − 𝛽𝑥𝑡

𝑗)
2𝛽|𝒩𝑘| ∥

2
})

𝑘∈𝒱
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= (prox 𝑓𝑘
2𝛽|𝒩𝑘|

(
𝛽|𝒩𝑘|𝑥𝑡

𝑘 − ∑𝑗∈𝒩𝑘
(𝑤𝑡

𝑘𝑗 − 𝑤𝑡
𝑗𝑘 − 𝛽𝑑𝑡

𝑘𝑗 + 𝛽𝑑𝑡
𝑗𝑘 − 𝛽𝑥𝑡

𝑗)
2𝛽|𝒩𝑘| ))

𝑘∈𝒱
.

The d-update remains unchanged, and is given by

d𝑡+1 = argmin
d

ℒ𝛽(x𝑡+1, d, w𝑡)

= argmin
d

⎧{
⎨{⎩

∑
(𝑖,𝑗)∈ℰ

(𝜆‖𝑑𝑖𝑗‖1 − ⟨𝑑𝑖𝑗, 𝑤𝑡
𝑖𝑗 + 𝛽(𝑥𝑡

𝑖 − 𝑥𝑡
𝑗)⟩ + 𝛽

2 ‖𝑑𝑖𝑗‖2)
⎫}
⎬}⎭

= (prox 𝜆
𝛽 ‖⋅‖1

(𝑤𝑡
𝑖𝑗 + 𝛽(𝑥𝑡

𝑖 − 𝑥𝑡
𝑗)

𝛽 ))
(𝑖,𝑗)∈ℰ

.

Therefore, we obtain the ADMM to solve (1).
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